

Registered Report

The relationship between corticospinal excitability and behavioural measures of movement imagery ability

Short title: Corticospinal excitability and imagery ability

Marcos Moreno-Verdú^{1*}, Laurine Boidequin¹, Baptiste M Waltzing¹, Elise E Van Caenegem¹, Charlène Truong¹, Gautier Hamoline¹, Robert M Hardwick¹

¹ Brain, Action, and Skill Laboratory (BAS-Lab), Institute of Neuroscience (Cognition and Systems Division), UCLouvain, Belgium

Correspondence to:

Dr. Marcos Moreno-Verdú (marcos.morenoverdu@uclouvain.be).

Brain, Action, and Skill Laboratory (BAS-Lab), Institute of Neuroscience,

Address: Av. Mounier 54, Woluwe-Saint-Lambert, 1200, Brussels, Belgium

Abstract

Imagining a movement without executing it has measurable effects on physical performance, learning, and rehabilitation. However, these effects rely on our ability to imagine performing actions—a complex, covert skill that is difficult to quantify. While movement imagery ability can be assessed by behavioural methods or measuring its neural correlates, the relationship between these measures is uncertain. This Registered Report will determine the association between three key behavioural processes during movement imagery—generation, maintenance and manipulation—and well-established neurophysiological measures of corticospinal excitability and intracortical inhibition during imagery, obtained via Transcranial Magnetic Stimulation. A behavioural battery including a questionnaire, a ‘mental chronometry’ task, and a hand rotation task will be collected alongside the amplitude of Motor Evoked Potentials and the change in Short Interval Cortical Inhibition during imagery. Bayesian correlations will assess the association between these measures to provide a comprehensive evaluation of the neuro-behavioural correlates of movement imagery.

Key words

Movement imagery; motor imagery; corticospinal excitability; TMS; SICI

Introduction

Our ability to imagine an action without executing it is of longstanding and widespread interest to scientists, clinicians, athletes, and philosophers. Our capacity to perform 'movement imagery'¹ is made possible through mental processes combining neuromotor control, perception, and higher order cognitive functions.² Movement imagery is particularly relevant as a complementary method to enhance motor learning—especially when physical practice is restricted (e.g., in rehabilitation)—as there is evidence that coupling mental and physical practice leads to stronger improvements in performance in a variety of motor skills.^{3,4} This has been observed across different stages of learning^{5,6} and for several motor domains.^{7,8} Movement imagery training therefore has applications across a broad and diverse range of fields, including sports and rehabilitation.^{9–11}

It has long been argued that the capacity to perform movement imagery (i.e., 'movement imagery ability') varies across individuals,^{12,13} which should in turn affect an individual's ability to benefit from using movement imagery training.¹⁴ This has led to the development of 'movement imagery ability assessments', which aim to determine performance in movement imagery tasks.^{15,16} Much research has been conducted into finding *valid* behavioural measures of imagery ability. So far, measures aiming to assess three different 'processes' of movement imagery—generation, maintenance and manipulation—have been proposed.^{17,18} Generation—the ability to bring a high-quality sensory representation to the mind's eye—is commonly assessed through self-report questionnaires.¹⁶ Technically these questionnaires evaluate the intensity (also referred to as vividness) with which the individual perceives the imagined movement, or the perceived ease of creating the mental representation. Classically two sensory modalities are considered in imagery questionnaires, namely visual (seeing the movement from a first- or third-person perspective) and kinesthetic (feeling the movement, usually from a first-person perspective).¹⁶ Maintenance—the ability to sustain the representation over time and with temporal precision—is usually assessed through mental chronometry paradigms.¹⁹ These paradigms evaluate the temporal relationship of the imagined movement with its physical counterpart; the closer the times, the better ability to precisely maintain movement imagery until the action is completed. Manipulation—the ability to dynamically transform the content and/or characteristics of the mental representation—is often assessed through mental rotation tasks. The most used paradigm is the Hand Laterality Judgement Task (HLJT), in which participants decide whether rotated images of hands belong the right or left side of the body, with measures of accuracy and reaction time typically employed to determine performance.^{20–22}

In spite of the ubiquitous use of imagery ability assessments in both research and applied contexts, their biological validity is still debated.²³ There is an ample body of neuroimaging research suggesting movement imagery activates a brain network largely overlapping with the classical sensory-motor (or action-related) network.^{24,25} Furthermore, movement imagery produces an increase in corticospinal excitability as assessed through Motor Evoked Potentials (MEPs) in response to single-pulse Transcranial Magnetic Stimulation (TMS).^{26,27} There is also converging evidence that movement imagery produces intracortical 'disinhibition' in the motor cortex assessed through paired-pulse TMS (i.e., lower inhibition in a Short Interval Intracortical Inhibition (SICI) protocol during imagery compared to rest).^{28–32} Nonetheless, this latter effect can vary depending on methodological aspects such as direction of TMS-induced currents, conditioning stimulus intensity, or the nature of the imagined movement.^{33–36} Based on the above evidence, movement imagery ability could be assessed by measuring the strength with which an individual produces corticospinal facilitation or intracortical disinhibition during imagery, illustrating the degree of recruitment of brain regions within the action (sensory-motor) network.²⁷ In other words, larger increases in corticospinal facilitation, or greater reductions of intracortical inhibition, may represent better ability to activate the action network

1
2
3 during movement imagery. However, a key question remains as to whether individuals exhibiting
4 *higher* ability to perform movement imagery according to behavioural measures would demonstrate
5 *stronger* neurophysiological effects of movement imagery. This is necessary as TMS-derived
6 measures may not be always feasible or possible to collect from a given individual, hence behavioural
7 measures may be used preferentially in this scenario.
8

9 Prior evidence on the relationship between corticospinal facilitation (increase in MEPs) and
10 behavioural measures of movement imagery is conflicting, and studies examining this question have
11 generally been statistically underpowered. While some analyses indicate moderate relationships (i.e.
12 individuals with 'higher' ability also show greater corticospinal facilitation), other results show no
13 *statistically significant* relationships between these variables.³⁷⁻³⁹ The strength of the association
14 partially depends on which process of movement imagery ability is being considered (generation or
15 manipulation have been specifically investigated so far), as well as which concrete test is used.
16 Studies have shown negligible or weak-to-moderate correlations with the HLJT (as a measure of
17 manipulation) as well as with the kinesthetic subscales of questionnaires (as measures of generation)
18 or trial-to-trial vividness, independently.³⁷⁻³⁹ No studies have assessed the relationship with
19 measures of maintenance (mental chronometry), but a combined index (using a questionnaire,
20 mental chronometry and physiological tests like skin conductance) weakly correlated with
21 corticospinal facilitation.²⁷ However, intracortical disinhibition in the motor cortex during movement
22 imagery was not different between 'good' and 'poor' imagers according to this measure.²⁷
23 Regardless, these prior works all had very limited sample sizes ($n < 25$ participants) that were
24 markedly underpowered for classical correlation analyses under traditional frequentist Null
25 Hypothesis Significance Testing (NHST). Consequently, the actual existence and strength of the
26 relationship between behavioural and neurophysiological measures of movement imagery remains
27 unclear, highlighting the need for this question to be examined with suitably powered studies.
28

29 This Registered Report will therefore elucidate the relationship between behavioural and
30 neurophysiological measurements of movement imagery. Imagery ability scores on a comprehensive
31 battery of behavioural tasks will be correlated with the change in MEP amplitude associated with
32 movement imagery in the largest sample so far. We predict (Hypothesis 1—see Table 1) that
33 individuals showing 'higher' imagery ability according to behavioural assessments will exhibit greater
34 corticospinal facilitation during movement imagery (i.e., a correlation will be observed in the
35 expected direction). We will also measure the strength of intracortical 'disinhibition' produced during
36 movement imagery, predicting (Hypothesis 2) that individuals showing higher imagery ability will
37 exhibit stronger disinhibition. We will use Bayesian correlations with pre-defined stopping criteria for
38 evidence in favour of the null or alternative hypotheses to ascertain whether MEPs and imagery
39 ability scores are associated. This study will therefore comprehensively address the fundamental
40 question of brain-behaviour relationships during imagery, advancing our understanding of
41 movement imagery ability and its evaluation, which has potentially wide-ranging applications for
42 both fundamental and applied situations.
43

51 Materials and Methods

52 General procedures

53 A within-participants design will be used. The study will take place at the Institute of Neuroscience,
54 UCLouvain (Belgium), and reporting will follow the Guidelines for Reporting Action Simulation
55 Studies⁴⁰ and checklists for TMS experiments.⁴¹ Ethical approval was obtained from the local Ethical
56 Committee.
57

Committee (Cliniques Universitaires Saint-Luc, Belgium; ID: NBBAS-2024/20DEC/566). All participants will provide written informed consent and receive financial compensation (€12.5/h).

Participants: Healthy individuals aged 18–40 with normal or corrected-to-normal vision and no neurological or psychiatric history will be included (see power analyses below). Handedness will be determined via the Edinburgh Handedness Inventory,⁴² with a Laterality Quotient ≥ 40 indicating right-handedness (range: [-100, +100]).⁴³ Eligibility for TMS will be screened with a standard self-administered questionnaire,⁴⁴ excluding participants with epilepsy, metal implants, or other standard contraindications. Socio-demographic data will include age, gender, education, handedness, and prior experience with movement imagery, non-motor visual imagery, and reaching tasks.

General procedure: PsychoPy software (version $\geq 2024.2.0$) will present all stimuli.⁴⁵ Stimulus size is expressed in 'PsychoPy units', where 1 unit equals screen height in landscape mode. Participants will complete a behavioral battery of movement imagery tests and a neurophysiological TMS assessment, with order counterbalanced across participants. Before testing, a standardized sheet will explain movement imagery, visual vs. kinesthetic modalities, and first- vs. third-person perspectives; the experimenter will clarify any doubts at that stage.

Neurophysiological assessment of movement imagery

TMS general procedure:

TMS will be used to elicit MEPs of the First Dorsal Interosseous (FDI) muscle and the Abductor Digit Minimi (ADM) of the dominant hand (Fig. 1A). We will record these two muscles to confirm muscle specificity of movement imagery and have an attention-matched condition. MEPs from these two muscles can be easily collected simultaneously with the same hotspot on a trial-by-trial basis.⁴⁶ Additionally, as these two muscles do not have an agonist-antagonist relationship, comparisons between them will allow us to investigate effects of muscle specificity without confounds due to spinal mechanisms (i.e., reciprocal inhibition). The target location in the brain will be the "motor hotspot", defined as the location of the Primary Motor Cortex (M1) that produces the largest and most consistent MEP amplitude in both FDI and ADM of the dominant hand using the lowest possible stimulation intensity. To find the optimal scalp position, the TMS coil will be positioned to induce a posterior-anterior current (coil handle facing backwards) and oriented approximately 45° rotated from the midline in the horizontal axis. MEPs will be determined as the peak-to-peak amplitude of the EMG signal (in μ V) after the stimulus artifact. After determining the motor hotspot, the Resting Motor Threshold (RMT) will be calculated, defined as the minimum stimulation intensity at which MEPs of at least 50 μ V amplitude in both FDI and ADM are produced in at least 5 out of 10 trials.⁴⁷ RMT will be expressed as a percentage of the Maximum Stimulator Output.

The EMG signal of each muscle will be acquired with two circular Ag/AgCl self-adhesive surface electrodes (diameter = 9mm) placed using a belly-tendon montage. A ground/reference electrode will be placed over the ulnar styloid process. The skin will be cleaned with alcohol before electrode placement. The EMG signal will be amplified with a gain of 1000, online bandpass filtered (1Hz–1000Hz) and Notch-filtered (50Hz) by a Digitimer D360 amplifier (Digitimer Ltd, Welwyn Garden City, Hers, UK), and digitised at 4KHz by a Power 1401 unit (Cambridge Electronic Design Ltd., Cambridge, UK). EMG data will be acquired using Signal v6.04 (Cambridge Electronic Design Ltd., Cambridge, UK) and stored for offline processing and analysis (see Supplementary Materials for offline bandpass filtering and post-processing of EMG). Single-pulse and paired-pulse TMS protocols will be delivered using two Magstim 200² monophasic stimulators coupled through a BiStim module and connected to a single figure-of-eight coil with 70-mm outer diameter (Magstim Co., UK). As 200² and BiStim

1
2
3 configurations are not equivalent in terms of maximum stimulator output,⁴⁸ TMS will be applied
4 always in BiStim mode throughout the experiment (including hotspotting, determining the RMT and
5 single- and paired-pulse protocols), as it will be required for the paired-pulse protocol. Coil
6 placement will be tracked throughout the experiment using a Visor2® Neuronavigation System
7 version 2.5.3.50294. This system allows us to track coil position in 3D space with accuracy of ~0.1mm.
8 Accurate coil position will be ensured via online visual feedback of 3 parameters showing the
9 deviation of the coil from the target hotspot (distance to target in mm, tilt deviation in degrees and
10 rotation deviation in degrees). We will aim to keep all 3 parameters simultaneously below 3 units
11 each throughout the experiment (i.e., <3mm and <3°), which ensures precise coil positioning. Trial
12 rejection criteria based on coil placement or signal noise are detailed in Supplementary Materials.
13
14

15 **Experimental conditions:**

16
17 MEPs will be collected under three experimental conditions in single-pulse and paired-pulse TMS
18 protocols (see below): 1) movement imagery of an 'active' muscle, 2) movement imagery of a 'non-
19 active' muscle and 3) rest. Participants will be required to maintain their eyes open throughout the
20 experiment. Stimuli will be presented on a 19-inch screen (refresh rate = 60 Hz) and controlled in
21 PsychoPy, which will be combined with Signal to trigger TMS pulses. The participant will sit
22 comfortably at approximately 60cm from the screen, with their dominant hand resting on the desk.
23
24

- 25 • **Movement imagery:** The individual will be asked to imagine abducting their dominant index
26 finger, therefore simulating a contraction of the FDI, or imagine abducting their dominant
27 little finger, therefore simulating a contraction of the ADM. Because in every trial MEPs will
28 be collected from both muscles (Fig. 1B), we anticipate that the imagined activation of a
29 muscle will have specific effects for the corresponding muscle (i.e. MEPs of FDI should
30 increase when imagining using the index but not the little finger, and MEPs of ADM should
31 increase when imagining using the little, but not the index finger; see Supplementary Figs.
32 S1-2 for pilot data). The individual will be instructed to imagine producing a ballistic
33 movement with their maximal possible force (i.e. simulating a Maximal Voluntary
34 Contraction) without actually producing any movement or perceptible contraction. Before
35 imagery, they will be allowed to physically practice the finger abductions and will also be
36 indicated that the movement must be of maximal amplitude (i.e. maximal Range of Motion
37 available), enhancing the goal-directedness of the movement. Each trial, a fixation cross will
38 be presented. The individual will be cued with an arbitrary on-screen Go signal (a green circle
39 of 0.2 x 0.2 PsychoPy units placed at the centre of the screen—see Fig. 1C) accompanied by a
40 short beep (200ms). The individual will be asked to simulate a ballistic movement of the
41 finger as soon as the Go signal appears and maintain it until the circle disappears (i.e., a
42 concentric phase followed by an isometric phase). Previous evidence suggests that
43 kinesthetic and visual modalities of movement imagery may have different neural substrates,
44 the former showing stronger activation of classical motor-related areas.^{49,50} It has also been
45 suggested that kinesthetic imagery leads to stronger increases in corticospinal excitability
46 than visual imagery.⁵¹ Therefore, the participant will be instructed to focus on kinesthetic
47 aspects of imagery, with the instruction "imagine the feeling of the action, focusing on
48 sensations like the contraction of the muscle and the movement of the joint". Instructions
49 will be given on-screen and standardized across participants. Even if indicated to use
50 kinesthetic imagery only, participants might experience difficulties to isolate a single sensory
51 modality. Therefore, post-experiment self-assessments will be collected to assess the use
52 and vividness of the different modalities and perspective of imagery (see below and
53 Supplementary Materials).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- **Rest:** Participants will be asked to maintain a relaxed position without any explicit cognitive task, while keep looking at the fixation cross. The same arbitrary cue will be employed as in the imagery condition.

TMS protocols (Fig. 1A):

For single-pulse TMS, a single Test Stimulus (TS) will be delivered over M1, to obtain MEPs in the two target muscles in each experimental condition. For the TS, stimulation intensity will be set at 120%RMT to obtain reliable MEPs throughout the experiment.⁵² The paired-pulse TMS will be a Short Interval Cortical Inhibition (SICI) protocol.^{53,54} In this protocol, the TS will be preceded by a Conditioning Stimulus (CS) delivered 3ms before the TS, through the same coil. For the CS, a subthreshold intensity of 80%RMT will be employed.⁵⁵ In both protocols, the first pulse (TS or CS) will be delivered at a random time between 1-3 seconds after the on-screen Go signal. The timings for each participant will have a Gaussian distribution with mean = 2s and SD = 0.25s, which will be the same for each TMS protocol and experimental condition, but whose order will be randomized independently for each condition. This distribution has been chosen to induce variability in the exact timing of the TMS pulse across trials, to avoid participants predicting the moment at which the pulse would occur.

Randomization and counterbalancing:

A total of 30 trials will be collected for each condition—movement imagery of the FDI muscle, movement imagery of the ADM muscle, and rest—and for each TMS protocol (single-pulse and SICI-conditioned), ensuring reliable MEP amplitude measures.⁵⁶ The inter-trial interval will be at least 3 seconds to allow stimulator recharge, prevent coil overheating, and avoid trial-to-trial carry-over effects.⁵⁷

Data will be collected in blocks of 60 trials, evenly divided across conditions. Within each block, participants will complete sub-blocks of 10 consecutive trials of the same condition. Sub-block changes will be signalled by on-screen text and a short tone. Condition order within each block will be pseudo-randomised so that every three sub-blocks include one of each condition and no condition is repeated consecutively. This design controls for time-related fluctuations in corticospinal excitability while minimising fatigue or confusion.

Each sub-block of 10 trials will contain 5 single-pulse and 5 paired-pulse (SICI) trials, presented in random order with no more than 3 consecutive trials using the same TMS protocol. Participants will complete 180 trials in total (30 trials × 3 conditions × 2 protocols). To reduce fatigue, a rest period of at least 1 min will be provided between blocks.

Attention checks:

Because there are no quantitative performance indicators we can measure during imagery, we will use attention checks at the end of randomly selected sub-blocks where participants must indicate which task they are performing, to ensure attention is maintained. Each grand block, 2 attention checks will be collected (i.e., 6 overall). Note that every trial the participant will be reminded of the current task they need to perform via on-screen text (imagery of FDI, imagery of ADM, or rest), making it very unlikely to miss these attention checks.

Self-report imagery vividness:

With the aim of determining possible direct relationships between corticospinal excitability and traditional self-report measures of imagery ability, at the end of each block participants will be asked

1
2
3 to rate their kinesthetic imagery vividness during movement imagery trials. They will do it on 11-
4 point scales (1 = “No image at all, I only know I am thinking about the task” to 10 = “Very intense as
5 normal feeling of movement”).
6

7 **Qualitative reports (self-assessments):**
8

9 As this will be the largest TMS study collecting data during movement imagery so far, we will ask
10 participants qualitative questions for purely descriptive analyses which could inform the design and
11 interpretation of future studies. The questions will focus on aspects such as the use of visual or
12 kinesthetic modalities of imagery, their vividness, the content of imagery, muscle specificity during
13 imagery, etc. These questions are listed in Supplementary Materials and data derived from them will
14 only be presented descriptively, without any formal statistical analysis.
15

16 ***Behavioural assessment of ‘movement imagery ability’***
17

18 **Generation:**
19

20 The ability to generate movement imagery will be assessed using the Movement Imagery
21 Questionnaire–Revised Second Edition (MIQ-RS).⁵⁸ This questionnaire is developed for both healthy
22 and clinical populations, enabling replication in individuals with motor impairments. It has also been
23 translated and cross-culturally adapted into multiple languages,^{59,60} ensuring generalisability.
24

25 The MIQ-RS (Fig. 1D) is a 14-item self-administered tool assessing 7 movements in two sensory
26 modalities: visual and kinesthetic. Each item involves: (1) adopting an initial position; (2) physically
27 performing a movement; (3) returning to the initial position; and (4) visually or kinesthetically
28 imagining the movement. Participants rate the ease or difficulty of generating the image on a 7-point
29 Likert scale (1 = very hard to see/feel; 7 = very easy to see/feel). Visual and kinesthetic items are
30 interspersed. Scores can be reported as a total (14–98 points) or by subscale sum-scores (visual or
31 kinesthetic, each 7–49 points), with higher scores indicating better imagery ability.
32

33 Originally developed in English, the MIQ-RS shows good psychometric properties, including robust
34 factor structure and test–retest reliability in healthy and clinical groups. As the study will be
35 conducted in a French-speaking community, we will use the French version for most participants,⁵⁹
36 while fluent non-francophones will complete the original English version.⁵⁸ An attention check will be
37 embedded mid-questionnaire to ensure proper completion. Afterward, participants will provide self-
38 assessments on imagery preferences (visual vs. kinesthetic), perspective (first- vs. third-person), and
39 related experiences (see Supplementary Materials).
40

41 **Maintenance:**
42

43 The ability to create a temporally accurate action representation will be assessed using the
44 Chronometric Radial Fitts Task (CRFT), a novel method based on Fitts’ law,⁶¹ which links movement
45 difficulty and duration. It measures how well this relationship is preserved in movement imagery.
46 Participants use a stylus to physically tap, and imagine tapping, radially arranged circular targets with
47 their dominant hand (Fig. 1E). Execution and imagery durations are recorded via simultaneous key
48 presses with the non-dominant hand. Target difficulty varies per Fitts’ law, which should hold for
49 both execution and imagery in individuals with good imagery maintenance (see Supplementary
50 Figure 3 for pilot data).
51

52 The task will be performed on a 24-inch capacitive touchscreen using a capacitive stylus.⁶² Five
53 indices of difficulty (ID) will be defined by the diameter of five grey targets (0.018, 0.024, 0.05, 0.1,
54 0.21 PsychoPy units), corresponding to IDs of 6.34, 5.35, 4.3, 3.38, and 2.47. All targets are radially
55 arranged.
56

1
2
3 arranged at a constant edge-to-edge distance (0.4 units) from a fixed red “home” target (diameter
4 0.05, location (0, -0.2) in PsychoPy units). Using edge-to-edge distance ensures that reach time from
5 home to each target (5 reaches/trial) increases linearly with ID.
6

7 In each trial, participants alternately tap the home target and each grey target, starting and ending at
8 home (11 taps total), moving from their non-dominant to dominant side (e.g., left-to-right for right-
9 handed). Simultaneously, they press the space bar with the non-dominant index finger to record
10 duration in both execution and imagery (no physical taps in imagery).
11

12 Participants will complete two conditions (execution, imagery), each with 4 repetitions per ID (4 × 5
13 IDs = 20 trials × 5 reaches = 100 measurements per condition). Conditions will be blocked (two blocks
14 of 20 trials) and block order randomised across participants. IDs will be randomised within blocks.
15 Before each block, a 5-trial practice with moderate IDs will provide feedback on total duration to
16 familiarise participants. In imagery trials, participants will use both visual and kinesthetic modalities,
17 keeping eyes open. After the imagery block, they will self-assess their experience (see Supplementary
18 Materials). A minimum 1-minute rest will be provided between blocks.
19

20 **Manipulation:**
21

22 The ability to transform the content of a mental action representation will be assessed with the HLJT,
23 using a recent open-source paradigm.⁶³ Participants decide whether a stimulus shows a left or right
24 hand (Fig. 1F). Left-hand images are mirror-reversed right-hand images. Stimuli appear in 8 frontal
25 rotational angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°; clockwise for right hands,
26 counterclockwise for left hands) and 2 views (palmar or dorsal), totaling 32 unique stimuli. The
27 biomechanical constraints effect, indicative of motor processing,^{64,65} measures how biological
28 limitations influence imagery in this task: medial (toward midline) rotations are processed faster than
29 lateral (away from midline) rotations, calculated as the reaction time difference between medial and
30 lateral rotations.
31

32 Each trial begins with an 800 ms central fixation cross. Stimuli (0.45 × 0.45 PsychoPy units) are
33 presented until a response is made. Participants respond bimanually, with left/right index fingers on
34 the ‘S’/‘L’ keys. Visual feedback is shown for 300 ms via two small boxes (0.07 × 0.07 units) at the
35 screen bottom, turning green for correct and red for incorrect responses.
36

37 A practice block with 32 trials (1 repetition per unique stimulus) familiarizes participants, followed by
38 3 test blocks of 96 trials each (3 repetitions per stimulus). Within each test block, stimuli are
39 randomized in sub-blocks of 32 trials to avoid repeating the same stimulus more than twice
40 consecutively. Only test blocks are analyzed, giving a total of 288 trials per participant (9 repetitions
41 per stimulus). Participants can rest for at least 1 minute between blocks.
42

43 **Qualitative reports (self-assessments):**
44

45 As this will be the largest behavioural study collecting data during movement imagery alongside TMS-
46 derived data to date, we will ask participants qualitative questions for purely descriptive analyses
47 which could inform the design and interpretation of future studies. The questions will focus on
48 aspects such as the use of visual or kinesthetic modalities of imagery, their vividness, the content of
49 imagery, their ability to generate, maintain and manipulate it, its speed, etc. These questions are
50 listed in Supplementary Materials and data derived from them will only be presented descriptively,
51 without any formal statistical analysis. They are specific for each behavioural test of the battery.
52

Individual-level outcome measures

Defining appropriate individual-level outcome measures is necessary to then use them for subsequent correlation analyses. Below we describe these measures in detail.

Neurophysiological measures:

- **Corticospinal excitability:** taking data from the single-pulse TMS protocol only, we will obtain the MEP amplitude in the 'active' movement imagery condition (presumed to reflect participants' imagery ability) and normalise it. As absolute MEP amplitudes may have significant inter-individual and inter-muscle variability, the choice of the most appropriate baseline condition to normalise by is an important aspect of TMS experiments.^{66,67} In our case, we could consider the rest condition or the 'non-active' movement imagery condition. There is compelling evidence that movement imagery produces muscle-specific changes in corticospinal excitability^{26,27,35,68–70}—for an overview see⁷¹. Therefore, although for group-level analyses the rest condition would be the most sensible baseline (as it allows to directly statistically compare the increase in corticospinal excitability between 'active' and 'non-active' imagery conditions), at the individual level this would ignore the fact that corticospinal excitability could be increased in a muscle-unspecific manner. That scenario would not necessarily reflect 'better' movement imagery ability, as the increase in MEP would not be specific to the muscle being imagined. Therefore, normalising by the 'non-active' imagery condition provides a direct measure of muscle-specific increases in corticospinal excitability, which is a straightforward metric of movement imagery ability. We note that normalising by the 'non-active' imagery condition has the potential limitation of ignoring the fact that both 'active' and 'non-active' conditions could show smaller MEPs in comparison to the rest condition (i.e., illustrating an inhibitory effect of imagery overall—though we note this effect is not present in our pilot data at the overall group level). However, we will normalise the data by the 'non-active' imagery condition as it is conceptually clearer than normalising by rest, accounts for general (non-muscle-specific) increases in corticospinal excitability during imagery, and a large body of evidence suggests the effect of imagery should be muscle-specific. We will use the formula: % MEP change = $(MEP_{active} / MEP_{non-active}) \times 100$. In this measure, muscle-specific corticospinal facilitation during movement imagery will be illustrated by %MEP changes > 100%, larger values indicating greater facilitation. A result of 100% will mean no corticospinal facilitation effect (i.e., poor imagery ability as the effect is not muscle-specific).
- **Intracortical inhibition:** in SICI paradigms (and other paired-pulse TMS protocols), the most widely implemented metric compares the average amplitude of conditioned MEPs (paired-pulse TMS protocol) with the average amplitude of unconditioned MEPs (single-pulse TMS protocol),⁷² using the formula: % Inhibition (%INH) = $(MEP_{conditioned}/MEP_{unconditioned}) * 100$. There is also evidence that movement imagery leads to muscle-specific inhibition⁷³. Therefore, for consistency with our previous approach and with available evidence, we will obtain the individual-level outcome measure by comparing the %INH of the 'active' imagery condition with the 'non-active' imagery condition. As both measures are already in the % metric, a simple subtraction ($%INH_{active} - %INH_{non-active}$) is straightforward to interpret, as positive values indicate muscle-specific cortical disinhibition, and values close to 0 or negative indicate general cortical disinhibition, which illustrate good and poor movement imagery ability, respectively.

1
2
3 **Behavioural measures:**
4

5 • **MIQ-RS:** As previous studies have reported significant correlations between corticospinal
6 excitability and imagery questionnaires mainly for the kinesthetic modality, and participants
7 will perform kinesthetic imagery in the TMS experiment, only the kinesthetic sum-score will
8 be used for confirmatory analysis. Being a bounded metric, it will be normalised to a 0–100%
9 scale: Kinesthetic score = $((\text{Sum-score} - \text{Minimum}) / \text{Range}) \times 100$. Higher values indicate
10 better imagery ability.
11

12 • **CRFT:** This task evaluates how well Fitts' law is preserved in movement imagery compared to
13 execution, reflecting the ability to sustain imagery over time. Movement time should
14 increase linearly with ID; thus, for each condition (execution, imagery), a simple linear
15 regression (Reach Time \sim ID \times Condition) will yield slopes. A Gamma link will be used to
16 account for right-skewed times. The difference between back-transformed slopes (in ms)
17 between execution and imagery will be taken as the absolute value, with values closer to 0
18 indicating better imagery ability. As a secondary measure, we will also consider the y-
19 intercept, representing movement duration for an Index of Difficulty = 0. We note the
20 y-intercept would be primarily informative if the execution and imagery slopes are not
21 parallel, and it is expected to be correlated with the slope. As index of imagery ability we
22 will compute the difference between y-intercepts between execution and imagery,
23 with values closer to 0 indicating better imagery ability.
24

25 • **HLJT:** Although both reaction time and accuracy can be measured, accuracy typically shows a
26 ceiling effect (~90% correct).⁶³ Therefore, the confirmatory outcome will be overall reaction
27 time (ms) from correct trials, averaged across all conditions (rotation angles, hand views,
28 directions). Lower reaction times indicate better imagery ability.
29
30

31 **Sample size calculations**
32

33 The study's primary contrast is the correlation between corticospinal excitability (change in MEP
34 amplitude during single-pulse TMS in the movement imagery condition) and overall reaction time in
35 the HLJT. This correlation was selected because prior studies have reported it,³⁹ enabling direct
36 comparison, and because HLJT is a more precise and objective measure than other behavioural tests.
37

38 Previous work found $r = -0.56$ for HLJT reaction time vs. MEP change ($r = 0.31$ for accuracy), and $r =$
39 0.65 for the kinesthetic subscale of VMIQ-2.³⁹ Other studies reported no correlation with total MIQ-R
40 scores (r not given) but found $r = 0.47$ with trial-to-trial vividness,³⁷ or correlations with kinesthetic
41 subscales depending on the questionnaire (KVIQ: $r = 0.61$; VMIQ-2: $r = 0.36$).³⁸ A "motor imagery
42 index" combining questionnaires, mental chronometry, and physiological data showed a weak
43 correlation with MEPs ($r = 0.23$).²⁷ A meta-analysis concluded that the MEP effect of combined action
44 observation and movement imagery was mainly due to imagery, and kinesthetic scores did not
45 moderate it ($\beta = -0.01$).⁷⁴

46 Given this mixed evidence, we will sample to detect small correlations ($r = 0.3$ in either direction).⁷⁵
47 This is conservative, as stronger correlations in prior work came from small samples ($n < 25$). In a
48 frequentist NHST framework (two-tailed, $\alpha = 0.05$, power = 0.95), $N = 139$ participants would be
49 required (pwrss v0.3.1 in R v4.4.2).⁷⁶ Precision-based calculations for $r = 0.3$ and 95% CI width = 0.3
50 also yielded $n = 140$ (MBESS v4.9.3; presize v0.3.7⁷⁷). Thus, both approaches converge on $N = 140$ as
51 adequate.

52 We will use a Bayesian framework to obtain evidence for H_0 . Data will be collected until Bayes Factor
53 (BF) ≥ 10 for H_1 ("Strong" evidence) or $BF \geq 3$ for H_0 ("Moderate" evidence). Thresholds are
54

1
2
3 asymmetric because $BF \geq 10$ for H_0 would require ~ 2000 participants, which is unfeasible for the
4 planned study. According to our simulation-based Bayesian Power Analysis (see Supplementary
5 Materials), with $r = 0.3$, $N = 140$ yields $BF > 10$ for H_1 with 77% probability and $BF > 3$ for H_0 with 68%
6 probability (Supplementary Figure 4). Calculated with BayesFactor v0.9.12-4.7⁷⁸ and correlation
7 v0.8.6⁷⁹ packages.
8

9
10 As evidence may emerge before reaching $N = 140$, a sequential stopping rule will be applied:^{80,81} a
11 minimum of 70 participants will be tested, then data will be reviewed every 10 participants until: A)
12 $BF \geq 10$ for H_1 , B) $BF \geq 3$ for H_0 , or C) $N = 140$ is reached. Multiplicity in Bayesian sequential analyses
13 will be controlled via progressive prior shrinkage (see Supplementary Materials and Supplementary
14 Figure 5 for details).⁸²
15

16 **Statistical analysis**

17 Analyses will be conducted in R 4.4.2 (R Core Team 2025). Continuous variables will be summarised
18 as mean \pm SD, categorical as n (%). Supplementary Materials detail data pre-processing, manipulation
19 checks, and methodological checks.
20

21 **Primary confirmatory analysis:**

22 Given multiple possible outcome measures, selecting a primary behavioural-neurophysiological
23 correlation is challenging. The HLJT, widely used as an implicit, objective measure of movement
24 imagery (reaction time, accuracy), has been chosen over the MIQ-RS (subjective self-report) and
25 CRFT (semi-objective, novel, with limited neurophysiological validation). Both MIQ-RS and CRFT will
26 be analysed as secondary confirmatory hypotheses. The main correlation will be between %MEP
27 change ('active' vs. 'non-active' imagery) in single-pulse TMS and HLJT reaction time, using Bayesian
28 Pearson's correlation ('correlation' v0.8.6).⁷⁹ Relationships will be visualised with scatter plots,
29 posterior distributions, and interpreted as negligible (<0.1), weak (0.1–0.4), moderate (0.4–0.7),
30 strong (0.7–0.9), or very strong (>0.9).⁸³ Spearman's correlation will be used in sensitivity analyses to
31 relax normality assumptions. Parameter uncertainty will be expressed as 95% Credible Intervals
32 (95%CrI).
33

34 For each correlation, three Bayesian indices will be reported:⁸⁴
35

- 40 1. **Bayes Factors (BFs):** Calculated via the Savage–Dickey density ratio,⁸⁵ presented as BF_{01} (for
41 H_0) or BF_{10} (for H_1), and interpreted as inconclusive evidence (=1), anecdotal (1–3),
42 moderate (3–10), strong (10–30), very strong (30–100), or extreme (>100) evidence.^{86,87} The
43 first "data look" ($N=70$) will use a non-informative Cauchy prior for the correlation coefficient
44 (centre = 0, rscale = 1). Priors will be progressively shrunk at each look to control for
45 multiplicity.^{78,88}
- 46 2. **Probability of Direction:** Proportion of the posterior off the median's sign, interpreted as the
47 probability the parameter is strictly positive or negative (range: 50–100%).⁸⁴
- 48 3. **Region of Practical Equivalence (ROPE) Percentage:** Proportion of the 95% Highest Density
49 Interval within the ROPE (−0.1 to 0.1 for r), indicating trivial/negligible correlations.⁸⁹

50 **Secondary confirmatory analyses:**

51 An equivalent procedure as described above will be followed for the rest of the comparisons. We will
52 correlate the corticospinal facilitation measure with the kinesthetic subscale of the MIQ-RS, the
53 difference in slopes and y-intercept measures of the CRFT and the direct vividness ratings provided
54 during the TMS experiment. Finally, the intracortical disinhibition measure will be correlated with the
55 three behavioural measures of movement imagery ability and the direct vividness ratings.
56

1 2 3 **Pilot data**

4
5 We provide pilot data showing the feasibility of our TMS experiment and the novel CRFT task. The
6 details are reported fully in Supplementary Materials.

7
8 In brief, for the TMS experiment we collected data from 10 healthy individuals (5 females, 5 males; 9
9 right-handed, 1 left-handed; age = 26.7 ± 2.53 years (mean \pm SD), range = 22 – 30 years; Resting
10 Motor Threshold (RMT) = $53.5 \pm 7.46\%$ MSO, range = 38 – 62% MSO). In single-pulse TMS
11 (Supplementary Figure 1B), the imagined ('active') muscle showed an average increase in z-scored
12 MEP amplitude compared to rest with a moderate-to-large effect size (Cohen's d (d_{rm}) = 1.05, 95%
13 confidence interval [-0.32, 2.42]) and compared to the not imagined ('non-active') muscle (d_{rm} = 0.71
14 [0.29, 1.13]). The non-active muscle showed a weaker facilitatory effect compared to rest (d_{rm} = 0.34
15 [-0.8, 1.49]). Additionally, compared to unconditioned MEPs (single-pulse TMS), conditioned MEPs
16 (paired-pulse TMS) showed smaller MEPs across all conditions (Supplementary Figure 2), validating
17 our SICI protocol. Compared to rest, the 'active' imagery condition showed less inhibition, with a
18 moderate effect size and large uncertainty (d_{rm} = 0.6 [-0.1, 1.31]). However, compared to the not
19 imagined muscle ('non-active' imagery condition), the effect was negligible (d_{rm} = 0.11 [-0.19, 0.40]),
20 indicating that disinhibition during movement imagery may occur through a general (not muscle-
21 specific) mechanism. Again, this proves feasibility of our proposed approach.

22
23
24
25
26 For the CRFT, we tested 10 healthy individuals (6 females, 4 males; 9 right-handed, 1 left-handed; age
27 = 26.44 ± 3.03 years, range = 22 – 30 years; 8 participants overlapping with our pilot data from the
28 neurophysiological assessment). The data replicate the fundamental effect whereby in the execution
29 condition (Supplementary Figure 3A), the group-level slope is different than 0 (Slope = 43.9ms [29.6,
30 58.3]) and individual-level slopes vary from 31 to 79ms (Supplementary Figure 3B), showing a
31 consistent increase of reaching time with difficulty. For imagery (Supplementary Figure 3A), the
32 group-level slope is also different than 0, although with a wider confidence interval (Slope = 38ms
33 [20.12, 55.9]), and individual-level slopes vary from 11 to 98ms, illustrating different degrees of
34 movement imagery ability in the sample.

35
36
37 Overall, our pilot data proves feasibility that the novel paradigms can be implemented in our
38 laboratory.

39 **Data availability statement**

40
41 All experiment materials, the raw and processed data, the code used for analysis, the data usage
42 guidance, and the laboratory log documenting the details of data collection will be available via the
43 Open Science Framework at <https://osf.io/yujvt/>. No data for any preregistered study (other than
44 pilot data included at Stage 1) will be collected prior to the date of acceptance in principle. All data
45 files will be collected after acceptance in principle and appropriately time-stamped according to the
46 approved registered Stage 1 protocol.

47 **Funding information**

48 This project is funded by a Fonds National de la Recherche Scientifique (FNRS) 'Chargé de
49 Recherches' (CR) postdoctoral fellowship (FNRS 1.B359.25) awarded to MMV and a Fonds National
50 de la Recherche Scientifique (FNRS) 'MIS' grant (FNRS F.4523.23) awarded to RMH.

51 **Competing interests**

52
53 The authors declare no competing interests.

References

1. Jeannerod M. Neural simulation of action: A unifying mechanism for motor cognition. In: Vol 14. Academic Press Inc.; 2001:103-109. doi:10.1006/nimg.2001.0832
2. Hurst AJ, Boe SG. Imagining the way forward: A review of contemporary motor imagery theory. *Front Hum Neurosci*. 2022;16. doi:10.3389/fnhum.2022.1033493
3. Ladda AM, Lebon F, Lotze M. Using motor imagery practice for improving motor performance – A review. *Brain Cogn*. 2021;150:105705. doi:10.1016/j.bandc.2021.105705
4. Guillot A, Desliens S, Rouyer C, Rogowski I. Motor imagery and tennis serve performance: The external focus efficacy. *J Sports Sci Med*. 2013;12(2):332-338.
5. Yáguez L, Nagel D, Hoffman H, Canavan AGM, Wist E, Hömberg V. A mental route to motor learning: Improving trajectory kinematics through imagery training. *Behav Brain Res*. 1998;90(1):95-106. doi:10.1016/S0166-4328(97)00087-9
6. Ruffino C, Truong C, Dupont W, et al. Acquisition and consolidation processes following motor imagery practice. *Sci Rep*. 2021;11(1):2295. doi:10.1038/s41598-021-81994-y
7. Piveteau É, Guillot A, Di Rienzo F. New insights on mind-muscle connection: Motor imagery concomitant to actual resistance training enhances force performance. *J Sci Med Sport*. Published online March 14, 2025. doi:10.1016/j.jsams.2025.03.005
8. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. *J Neurophysiol*. 1995;74(3):1037-1045. doi:10.1152/jn.1995.74.3.1037
9. Guillot A, Rienzo FD, Frank C, Debarnot U, MacIntyre TE. From simulation to motor execution: a review of the impact of dynamic motor imagery on performance. *Int Rev Sport Exerc Psychol*. 2021;0(0):1-20. doi:10.1080/1750984X.2021.2007539
10. Guerra ZF, Lucchetti ALG, Lucchetti G. Motor Imagery Training after Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. *J Neurol Phys Ther*. 2017;41(4):205-214. doi:10.1097/NPT.0000000000000200
11. Paravlic AH, Slimani M, Tod D, Marusic U, Milanovic Z, Pisot R. Effects and Dose-Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis. *Sports Med*. 2018;48(5):1165-1187. doi:10.1007/s40279-018-0874-8
12. Floridou GA, Peerdeman KJ, Schaefer RS. Individual differences in mental imagery in different modalities and levels of intentionality. *Mem Cognit*. 2022;50(1):29-44. doi:10.3758/s13421-021-01209-7
13. Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. *NeuroImage*. 2008;41(4):1471-1483. doi:10.1016/j.neuroimage.2008.03.042
14. Dorsch S, Nicholson V, Roman E, Fanayan E, Chagpar S. Motor imagery priming improves activity and impairment outcomes in people after stroke but the effects of other

1
2
3 types of priming are unclear: a systematic review. *J Physiother.* 2024;70(4):275-287.
4 doi:10.1016/j.jphys.2024.08.007
5
6 15. Heremans E, Vercruyse S, Spildooren J, Feys P, Helsen WF, Nieuwboer A. Evaluation
7 of motor imagery ability in neurological patients: a review. *Mov Sports Sci - Sci Mot.*
8 2013;82(October):31-38. doi:10.1051/sm/2013097
9
10 16. Suica Z, Behrendt F, Gäumann S, et al. Imagery ability assessments: a cross-disciplinary
11 systematic review and quality evaluation of psychometric properties. *BMC Med.*
12 2022;20(1):166. doi:10.1186/s12916-022-02295-3
13
14 17. Kraeutner SN, Eppler SN, Stratas A, Boe SG. Generate, maintain, manipulate? Exploring
15 the multidimensional nature of motor imagery. *Psychol Sport Exerc.* 2020;48:101673.
16 doi:10.1016/j.psychsport.2020.101673
17
18 18. Cumming J, Eaves DL. The Nature, Measurement, and Development of Imagery Ability.
19 *Imagin Cogn Personal.* 2018;37(4):375-393. doi:10.1177/0276236617752439
20
21 19. Williams SE, Guillot A, Di Renzo F, Cumming J. Comparing self-report and mental
22 chronometry measures of motor imagery ability. *Eur J Sport Sci.* 2015;15(8):703-711.
23 doi:10.1080/17461391.2015.1051133
24
25 20. Parsons LM. Temporal and Kinematic Properties of Motor Behavior Reflected in Mentally
26 Simulated Action. *J Exp Psychol Hum Percept Perform.* 1994;20(4):709-730.
27 doi:10.1037/0096-1523.20.4.709
28
29 21. Sekiyama K. Kinesthetic aspects of mental representations in the identification of left and
30 right hands. *Percept Psychophys.* 1982;32(2):89-95. doi:10.3758/BF03204268
31
32 22. Jones HG, Braithwaite FA, Edwards LM, Causby RS, Conson M, Stanton TR. The effect
33 of handedness on mental rotation of hands: a systematic review and meta-analysis.
34 *Psychol Res.* 2021;85(8):2829-2881. doi:10.1007/s00426-020-01444-8
35
36 23. Dahm SF. On the Assessment of Motor Imagery Ability: A Research Commentary.
37 *Imagin Cogn Personal.* 2020;39(4). doi:10.1177/0276236619836091
38
39 24. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action:
40 Comparing meta-analyses of imagery, observation, and execution. *Neurosci Biobehav
41 Rev.* 2018;94:31-44. doi:10.1016/j.neubiorev.2018.08.003
42
43 25. Van Caenegem EE, Moreno-Verdú M, Waltzing BM, et al. Multisensory approach in
44 Mental Imagery: ALE meta-analyses comparing Motor, Visual and Auditory Imagery.
45 *Neurosci Biobehav Rev.* 2024;167:105902. doi:10.1016/j.neubiorev.2024.105902
46
47 26. Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G. Corticospinal
48 excitability is specifically modulated by motor imagery: a magnetic stimulation study.
49 *Neuropsychologia.* 1999;37(2):147-158. doi:10.1016/s0028-3932(98)00089-x
50
51 27. Lebon F, Byblow WD, Collet C, Guillot A, Stinear CM. The modulation of motor cortex
52 excitability during motor imagery depends on imagery quality. *Eur J Neurosci.*
53 2012;35(2):323-331. doi:10.1111/j.1460-9568.2011.07938.x
54
55 28. Neige C, Monany DR, Stinear CM, Byblow WD, Papaxanthis C, Lebon F. Unravelling the
56 Modulation of Intracortical Inhibition During Motor Imagery: An Adaptive Threshold-
57 Hunting Study. *Neuroscience.* 2020;434:102-110.
58 doi:10.1016/j.neuroscience.2020.03.038
59
60

1
2
3 29. Kumru H, Soto O, Casanova J, Valls-Sole J. Motor cortex excitability changes during
4 imagery of simple reaction time. *Exp Brain Res.* 2008;189(3):373-378.
5 doi:10.1007/s00221-008-1433-6
6
7 30. Liepert J, Neveling N. Motor excitability during imagination and observation of foot
8 dorsiflexions. *J Neural Transm Vienna* 1996. 2009;116(12):1613-1619.
9 doi:10.1007/s00702-009-0287-9
10
11 31. Abbruzzese G, Assini A, Buccolieri A, Marchese R, Trompetto C. Changes of intracortical
12 inhibition during motor imagery in human subjects. *Neurosci Lett.* 1999;263(2-3):113-
13 116. doi:10.1016/s0304-3940(99)00120-2
14
15 32. Stinear CM, Byblow WD. Role of intracortical inhibition in selective hand muscle
16 activation. *J Neurophysiol.* 2003;89(4):2014-2020. doi:10.1152/jn.00925.2002
17
18 33. Stinear CM, Byblow WD. Modulation of corticospinal excitability and intracortical
19 inhibition during motor imagery is task-dependent. *Exp Brain Res.* 2004;157(3):351-358.
20 doi:10.1007/s00221-004-1851-z
21
22 34. Neige C, Ciechelski V, Lebon F. The recruitment of indirect waves within primary motor
23 cortex during motor imagery: A directional transcranial magnetic stimulation study. *Eur J
24 Neurosci.* 2022;56(12):6187-6200. doi:10.1111/ejn.15843
25
26 35. Sohn YH, Dang N, Hallett M. Suppression of Corticospinal Excitability During Negative
27 Motor Imagery. *J Neurophysiol.* 2003;90(4):2303-2309. doi:10.1152/jn.00206.2003
28
29 36. Ridding MC, Rothwell JC. Afferent input and cortical organisation: a study with magnetic
30 stimulation. *Exp Brain Res.* 1999;126(4):536-544. doi:10.1007/s002210050762
31
32 37. Moriuchi T, Nakashima A, Nakamura J, et al. The Vividness of Motor Imagery Is
33 Correlated With Corticospinal Excitability During Combined Motor Imagery and Action
34 Observation. *Front Hum Neurosci.* 2020;14. Accessed January 7, 2023.
35 https://www.frontiersin.org/articles/10.3389/fnhum.2020.581652
36
37
38 38. Vasilyev A, Liburkina S, Yakovlev L, Perepelkina O, Kaplan A. Assessing motor imagery
39 in brain-computer interface training: Psychological and neurophysiological correlates.
40 *Neuropsychologia.* 2017;97:56-65. doi:10.1016/j.neuropsychologia.2017.02.005
41
42 39. Williams J, Pearce AJ, Loporto M, Morris T, Holmes PS. The relationship between
43 corticospinal excitability during motor imagery and motor imagery ability. *Behav Brain
44 Res.* 2012;226(2):369-375. doi:10.1016/j.bbr.2011.09.014
45
46 40. Moreno-Verdú M, Hamoline G, Van Caenegem EE, et al. Guidelines for reporting action
47 simulation studies (GRASS): Proposals to improve reporting of research in motor
48 imagery and action observation. *Neuropsychologia.* 2024;192:108733.
49 doi:10.1016/j.neuropsychologia.2023.108733
50
51
52 41. Chipchase L, Schabrun S, Cohen L, et al. A checklist for assessing the methodological
53 quality of studies using transcranial magnetic stimulation to study the motor system: An
54 international consensus study. *Clin Neurophysiol.* 2012;123(9):1698-1704.
55 doi:10.1016/j.clinph.2012.05.003
56
57 42. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory.
58 *Neuropsychologia.* 1971;9(1):97-113. doi:10.1016/0028-3932(71)90067-4
59
60

1
2
3 43. Robinson J. Edinburgh Handedness Inventory. In: Volkmar FR, ed. *Encyclopedia of*
4 *Autism Spectrum Disorders*. Springer; 2013:1051-1054. doi:10.1007/978-1-4419-1698-
5 3_877

6
7 44. Lefaucheur JP, André-Obadia N, Poulet E, et al. Recommandations françaises sur
8 l'utilisation de la stimulation magnétique transcrânienne répétitive (rTMS) : règles de
9 sécurité et indications thérapeutiques. *Neurophysiol Clin Neurophysiol*. 2011;41(5):221-
10 295. doi:10.1016/j.neucli.2011.10.062

11
12 45. Peirce J, Gray JR, Simpson S, et al. PsychoPy2: Experiments in behavior made easy.
13 *Behav Res Methods*. 2019;51(1):195-203. doi:10.3758/s13428-018-01193-y

14
15 46. Hardwick RM, McAllister CJ, Holmes PS, Edwards MG. Transcranial magnetic
16 stimulation reveals modulation of corticospinal excitability when observing actions with
17 the intention to imitate. *Eur J Neurosci*. 2012;35(9):1475-1480. doi:10.1111/j.1460-
18 9568.2012.08046.x

19
20 47. Lefaucheur JP. Chapter 37 - Transcranial magnetic stimulation. In: Levin KH, Chauvel P,
21 eds. *Handbook of Clinical Neurology*. Vol 160. Clinical Neurophysiology: Basis and
22 Technical Aspects. Elsevier; 2019:559-580. doi:10.1016/B978-0-444-64032-1.00037-0

23
24 48. Do M, Clark GM, Fuelscher I, et al. Magstim 2002 and Bistim Mode maximum stimulus
25 output values are not equivalent: Configuration selection is critical. *Brain Stimul Basic*
26 *Transl Clin Res Neuromodulation*. 2020;13(2):444-446. doi:10.1016/j.brs.2019.12.009

27
28 49. Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Brain activity during
29 visual versus kinesthetic imagery: An fMRI study. *Hum Brain Mapp*. 2009;30(7):2157-
30 2172. doi:10.1002/hbm.20658

31
32 50. Kilintari M, Narayana S, Babajani-Feremi A, Rezaie R, Papanicolaou AC. Brain activation
33 profiles during kinesthetic and visual imagery: An fMRI study. *Brain Res*. 2016;1646:249-
34 261. doi:10.1016/j.brainres.2016.06.009

35
36 51. Stinear CM, Byblow WD, Steyvers M, Levin O, Swinnen SP. Kinesthetic, but not visual,
37 motor imagery modulates corticomotor excitability. *Exp Brain Res*. 2006;168(1):157-164.
38 doi:10.1007/s00221-005-0078-y

39
40 52. Pellegrini M, Zoghi M, Jaberzadeh S. The effect of transcranial magnetic stimulation test
41 intensity on the amplitude, variability and reliability of motor evoked potentials. *Brain Res*.
42 2018;1700:190-198. doi:10.1016/j.brainres.2018.09.002

43
44 53. Ibáñez J, Spampinato DA, Paraneetharan V, Rothwell JC. SICI during changing brain
45 states: Differences in methodology can lead to different conclusions. *Brain Stimulat*.
46 2020;13(2):353-356. doi:10.1016/j.brs.2019.11.002

47
48 54. Cirillo J, Semmler JG, Mooney RA, Byblow WD. Conventional or threshold-hunting TMS?
49 A tale of two SICIs. *Brain Stimul Basic Transl Clin Res Neuromodulation*.
50 2018;11(6):1296-1305. doi:10.1016/j.brs.2018.07.047

51
52 55. Wagle-Shukla A, Ni Z, Gunraj CA, Bahl N, Chen R. Effects of short interval intracortical
53 inhibition and intracortical facilitation on short interval intracortical facilitation in human
54 primary motor cortex. *J Physiol*. 2009;587(Pt 23):5665. doi:10.1113/jphysiol.2009.181446

55
56 56. Biabani M, Farrell M, Zoghi M, Egan G, Jaberzadeh S. The minimal number of TMS trials
57 required for the reliable assessment of corticospinal excitability, short interval intracortical

58
59
60

1
2
3 inhibition, and intracortical facilitation. *Neurosci Lett.* 2018;674:94-100.
4 doi:10.1016/j.neulet.2018.03.026
5
6 57. Julkunen P, Säisänen L, Hukkanen T, Danner N, Könönen M. Does second-scale
7 intertrial interval affect motor evoked potentials induced by single-pulse transcranial
8 magnetic stimulation? *Brain Stimul Basic Transl Clin Res Neuromodulation.*
9 2012;5(4):526-532. doi:10.1016/j.brs.2011.07.006
10
11 58. Gregg M, Hall C, Butler A. The MIQ-RS: A suitable Option for examining movement
12 imagery ability. *Evid Based Complement Alternat Med.* 2007;7(2):249-257.
13 doi:10.1093/ecam/nem170
14
15 59. Loison B, Moussadqaq AS, Cormier J, et al. Translation and validation of the French
16 Movement Imagery Questionnaire - Revised Second version (MIQ-RS). *Ann Phys
17 Rehabil Med.* 2013;56(3):157-173. doi:10.1016/j.rehab.2013.01.001
18
19 60. Cantalejo-Fernández M, Díaz-Arribas MJ, Fernández-de-las-Peñas C, Plaza-Manzano
20 G, Ríos-León M, Martín-Casas P. Translation and validation of the Spanish Movement
21 Imagery Questionnaire Revised Second version (MIQ-RS). *PM&R.* 2021;10.1002/pmr.
22 doi:10.1002/pmrj.12546
23
24 61. Fitts PM. The information capacity of the human motor system in controlling the
25 amplitude of movement. *J Exp Psychol.* 1954;47(6):381-391. doi:10.1037/h0055392
26
27 62. Czilczer C, Sachse P, Dahm S. One size Fitts' all? Reconsidering the use of deviations
28 from real-time action imagery in mental chronometry tasks. OSF. Preprint posted online
29 June 23, 2025. doi:10.31234/osf.io/c2mw6_v1
30
31
32 63. Moreno-Verdú M, McAtee SM, Waltzing BM, Caenegem EV, Hardwick RM.
33 Development and validation of an open-source Hand Laterality Judgement Task for in-
34 person and online studies. *bioRxiv.* Preprint posted online October 21,
35 2024:2024.10.17.618819. doi:10.1101/2024.10.17.618819
36
37
38 64. ter Horst AC, Jongsma MLA, Janssen LK, van Lier R, Steenbergen B. Different mental
39 rotation strategies reflected in the rotation related negativity. *Psychophysiology.*
40 2012;49(4):566-573. doi:10.1111/j.1469-8986.2011.01322.x
41
42 65. Meng S, Oi M, Sekiyama K, Saito H. The neural mechanism of biomechanical constraints
43 in the hand laterality judgment task: A near-infrared spectroscopy study. *Neurosci Lett.*
44 2016;627:211-215. doi:10.1016/j.neulet.2016.05.069
45
46 66. Loporto M, McAllister C, Williams J, Hardwick R, Holmes P. Investigating central
47 mechanisms underlying the effects of action observation and imagery through
48 transcranial magnetic stimulation. *J Mot Behav.* 2011;43(5):361-373.
49 doi:10.1080/00222895.2011.604655
50
51 67. Naish KR, Houston-Price C, Bremner AJ, Holmes NP. Effects of action observation on
52 corticospinal excitability: Muscle specificity, direction, and timing of the mirror response.
53 *Neuropsychologia.* 2014;64:331-348. doi:10.1016/j.neuropsychologia.2014.09.034
54
55 68. Grosprêtre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network
56 modulation induced by motor imagery. *J Neurophysiol.* 2016;115(3):1279-1288.
57 doi:10.1152/jn.00952.2015
58
59
60

1
2
3 69. Takemi M, Maeda T, Masakado Y, Siebner HR, Ushiba J. Muscle-selective disinhibition
4 of corticomotor representations using a motor imagery-based brain-computer interface.
5 *NeuroImage*. 2018;183:597-605. doi:10.1016/j.neuroimage.2018.08.070
6
7 70. Foysal KMR, Baker SN. Induction of plasticity in the human motor system by motor
8 imagery and transcranial magnetic stimulation. *J Physiol*. 2020;598(12):2385-2396.
9 doi:10.1113/JP279794
10
11 71. Grosprêtre S, Ruffino C, Lebon F. Motor imagery and cortico-spinal excitability: A review.
12 *Eur J Sport Sci*. 2016;16(3):317-324. doi:10.1080/17461391.2015.1024756
13
14 72. Corp DT, Bereznicki HGK, Clark GM, et al. Large-scale analysis of interindividual
15 variability in single and paired-pulse TMS data. *Clin Neurophysiol Off J Int Fed Clin*
16 *Neurophysiol*. 2021;132(10):2639-2653. doi:10.1016/j.clinph.2021.06.014
17
18 73. Lebon F, Ruffino C, Greenhouse I, Labruna L, Ivry RB, Papaxanthis C. The Neural
19 Specificity of Movement Preparation During Actual and Imagined Movements. *Cereb*
20 *Cortex N Y NY*. 2019;29(2):689-700. doi:10.1093/cercor/bhx350
21
22 74. Chye S, Valappil AC, Wright DJ, et al. The effects of combined action observation and
23 motor imagery on corticospinal excitability and movement outcomes: Two meta-
24 analyses. *Neurosci Biobehav Rev*. 2022;143:104911.
25 doi:10.1016/j.neubiorev.2022.104911
26
27 75. Dancey CP, Reidy J. *Statistics without Maths for Psychology: Using SPSS for Windows*.;
28 2004.
29
30 76. Bulus M. pwrss: Statistical Power and Sample Size Calculation Tools. Published online
31 2023. <https://CRAN.R-project.org/package=pwrss>
32
33 77. Haynes AG, Lenz A, Stalder O, Limacher A. `presize`: An R-package for precision-based
34 sample size calculation in clinical research. *J Open Source Softw*. 2021;6(60):3118.
35 doi:10.21105/joss.03118
36
37 78. Morey R, Rouder JN. BayesFactor: Computation of Bayes Factors for Common Designs.
38 R package version 0.9.12-4.6. 2023. Accessed November 26, 2024.
39 <https://richarddmorey.r-universe.dev/BayesFactor/citation>
40
41 79. Makowski D, Ben-Shachar MS, Patil I, Lüdecke D. Methods and Algorithms for
42 Correlation Analysis in R. *J Open Source Softw*. 2020;5(51):2306.
43 doi:10.21105/joss.02306
44
45 80. Tendeiro JN, Kiers HAL, van Ravenzwaaij D. Worked-out examples of the adequacy of
46 Bayesian optional stopping. *Psychon Bull Rev*. 2022;29(1):70-87. doi:10.3758/s13423-
47 021-01962-5
48
49 81. Rouder JN. Optional stopping: No problem for Bayesians. *Psychon Bull Rev*.
50 2014;21(2):301-308. doi:10.3758/s13423-014-0595-4
51
52 82. de Heide R, Grünwald PD. Why optional stopping can be a problem for Bayesians.
53 *Psychon Bull Rev*. 2021;28(3):795-812. doi:10.3758/s13423-020-01803-x
54
55 83. Schober P, Boer C, Schwarte LA. Correlation Coefficients: Appropriate Use and
56 Interpretation. *Anesth Analg*. 2018;126(5):1763. doi:10.1213/ANE.0000000000002864
57
58
59
60

1
2
3 84. Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D. Indices of Effect Existence and
4 Significance in the Bayesian Framework. *Front Psychol*. 2019;10.
5 doi:10.3389/fpsyg.2019.02767
6
7 85. Makowski D, Ben-Shachar MS, Lüdecke D. bayestestR: Describing Effects and their
8 Uncertainty, Existence and Significance within the Bayesian Framework. *J Open Source
9 Softw*. 2019;4(40):1541. doi:10.21105/joss.01541
10
11 86. Andraszewicz S, Scheibehenne B, Rieskamp J, Grasman R, Verhagen J, Wagenmakers
12 EJ. An Introduction to Bayesian Hypothesis Testing for Management Research. *J
13 Manag*. 2015;41(2):521-543. doi:10.1177/0149206314560412
14
15 87. Jeffreys H. *The Theory of Probability*. OUP Oxford; 1998.
16
17 88. Ly A, Verhagen J, Wagenmakers EJ. Harold Jeffreys's default Bayes factor hypothesis
18 tests: Explanation, extension, and application in psychology. *J Math Psychol*.
19 2016;72:19-32. doi:10.1016/j.jmp.2015.06.004
20
21 89. Kruschke JK. Rejecting or Accepting Parameter Values in Bayesian Estimation. *Adv
22 Methods Pract Psychol Sci*. 2018;1(2):270-280. doi:10.1177/2515245918771304
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure legends

Figure. 1. Overview of the experimental methodology to assess movement imagery ability. Panels a-c depict the neurophysiological assessment and **Panels d-f** the behavioural assessment. **Panel A** shows the general TMS procedure. Motor Evoked Potentials (MEPs) from the dominant First Dorsal Interosseous (FDI) and Abductor Digitii Minimi (ADM) will be recorded via Transcranial Magnetic Stimulation (TMS). Two TMS protocols (which will be randomly delivered) will be used. For single-pulse TMS, only the Test Stimulus (TS) is delivered, whereas in the paired-pulse TMS (SICI), the Conditioning Stimulus (CS) is delivered 3ms before the TS, decreasing the MEP amplitude in response to the TS. Intensities for these stimuli will be set based on the participant's Resting Motor Threshold (RMT). **Panel B** shows the two main experimental conditions (plus rest—not represented). During movement imagery, participants will imagine performing either an index finger abduction or a little finger abduction (maximal voluntary contraction of FDI and ADM, respectively, maintained for 3s). TMS will be delivered during imagery in order to probe corticospinal excitability for both the 'imagined muscle' and the 'non-imagined muscle' in each trial. **Panel C** schematically illustrates trials in this experiment. A Go signal (arbitrary green circle accompanied by a sound) will appear to indicate to the participant that they should start the current imagery task. The stimulus will stay on screen for 3s, indicating imagery must be maintained during this period. The TMS pulse can be delivered between 1-3 seconds after the Go signal, with a gaussian distribution to induce variability. **Panel D** shows the Movement Imagery Questionnaire-Revised Second edition to assess imagery generation. The questionnaire has 7 movements imagined in visual or kinesthetic modalities. Participants will describe their modality preferences, unintentional use of visual/kinesthetic modalities and visual perspectives after completing the questionnaire on 11-point rating scales. **Panel E** shows the Chronometric Radial Fitts' Task to assess imagery maintenance. Participants will physically tap or imagine tapping (with a stylus) radially arranged circular targets with their dominant hand. Execution and imagery durations are isolated through simultaneous key presses with their non-dominant hand. Targets vary in difficulty according to Fitts' law, which should hold for both execution and imagery. After the imagery block participants will describe their experience during imagery on 11-point rating scales. **Panel F** shows the Hand Laterality Judgement Task to assess imagery manipulation. Participants will see images of rotated hands in 8 possible angles and will be asked to judge their laterality (left or right), responding bimanually with their corresponding hand. Stimuli will be rotated clockwise or counterclockwise towards medial or lateral orientations. Feedback on accuracy will be provided throughout the task via two small boxes located at the bottom of the screen. Participants will describe their strategies and use of imagery on 11-point rating scales after finishing the task. Panels A and B were created in BioRender: [Robert Hardwick]. 2025. Link (Part A): <https://app.biorender.com/biorender-templates/details/t-693fde2126c3ddda8ec5b095-tms-setup-meps/?source=gallery>. Link (Part B): <https://app.biorender.com/biorender-templates/details/t-693fe1033897dfd4bda6fe3c-movement-imagery-conditions/?source=gallery>.

Tables

Table 1. Design Table.

Question	Hypothesis	Sampling plan (e.g. power analysis)	Analysis Plan	Interpretation given to different outcomes
Is the reaction time in the HLJT correlated with the muscle-specific increase in single-pulse MEPs during movement imagery?	The reaction time in the HLJT will be at least weakly and <i>negatively</i> correlated ($r = -0.3$) with the change in single-pulse MEP during 'active' movement imagery.	For a true Pearson's $r = -0.3$, and a 95%CI width = -0.3 (r varies ± 0.15 , from -0.15 to -0.45), the target sample size would be $n = 140$ individuals.	Sequential Bayesian Pearson's correlation coefficients: $BF_{10} > 10$ and $BF_{01} > 3$ to obtain evidence in favour of H_1 or H_0 , respectively.	If evidence is found for the presence of an association, it would imply biological validity for the use of the reaction time in the HLJT as a movement imagery ability test. If evidence is found for the absence of an association, it would imply lack of biological validity for the reaction time in the HLJT.
Is the reaction time in the HLJT correlated with the muscle-specific decrease in cortical inhibition (i.e. disinhibition) during movement imagery?	The reaction time in the HLJT will be at least weakly and <i>negatively</i> correlated ($r = -0.3$) with the decrease in cortical inhibition during 'active' movement imagery.	As above.	As above.	As above.
Is the kinesthetic sum-score of the MIQ-RS correlated with the muscle-specific increase in MEPs during movement imagery, and muscle-specific decrease in cortical inhibition?	The kinesthetic sum-score of the MIQ-RS will be at least weakly and <i>positively</i> correlated ($r = -0.3$) with the increase in single-pulse MEPs and the decrease in cortical inhibition, during 'active' movement imagery.	As above.	As above.	As above.
Is the difference in slopes of the CRFT correlated with the muscle-specific increase in MEPs during movement imagery, and muscle-specific decrease in cortical inhibition?	The difference in slopes will be at least weakly and <i>negatively</i> correlated ($r = -0.3$) with the increase in single-pulse MEPs and the decrease in cortical inhibition, during 'active' movement imagery.	As above.	As above.	As above.

Abbreviations: BF: Bayes Factor; CRFT: Chronometric Radial Fitts Task; HLJT: Hand Laterality Judgement Task; MIQ-RS: Movement Imagery Questionnaire-Revised Second Edition; MEPs: Motor Evoked Potentials.

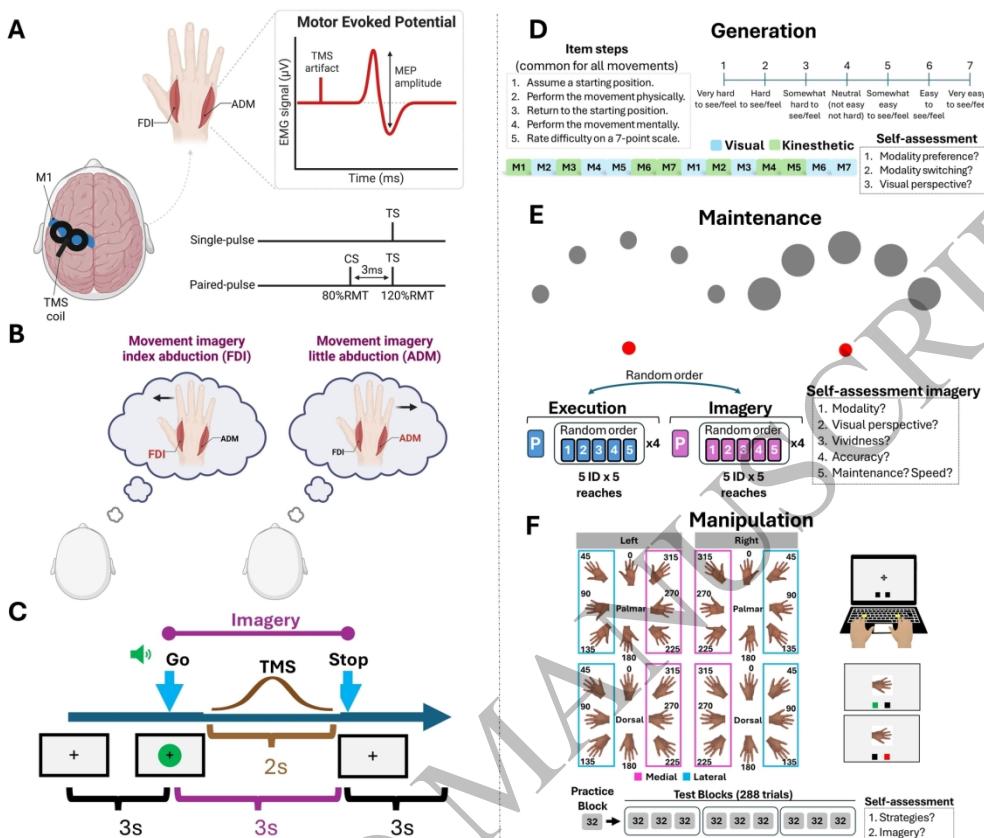
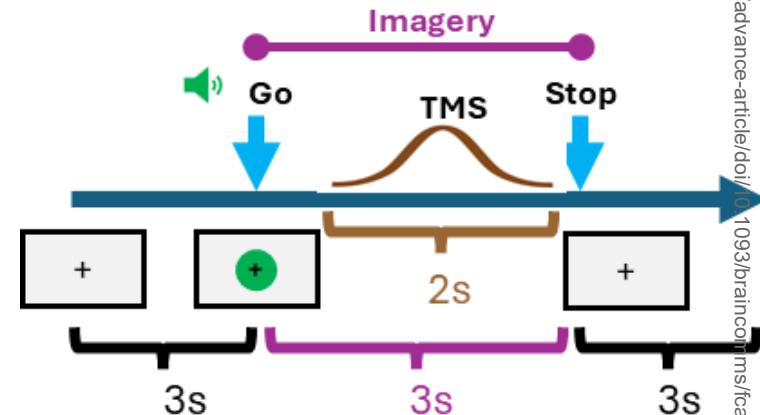
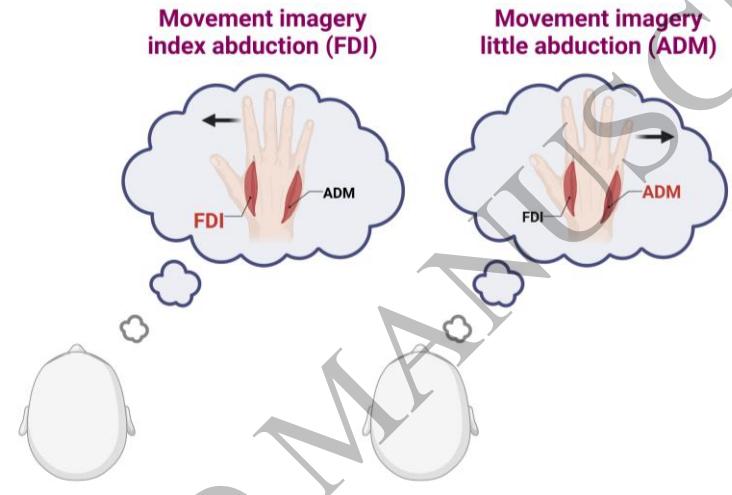
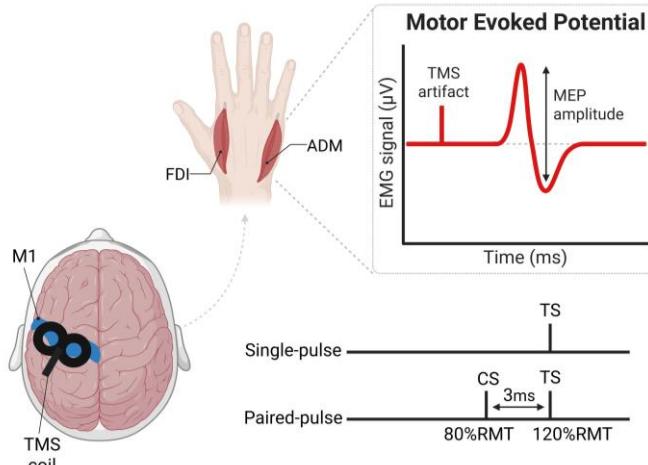
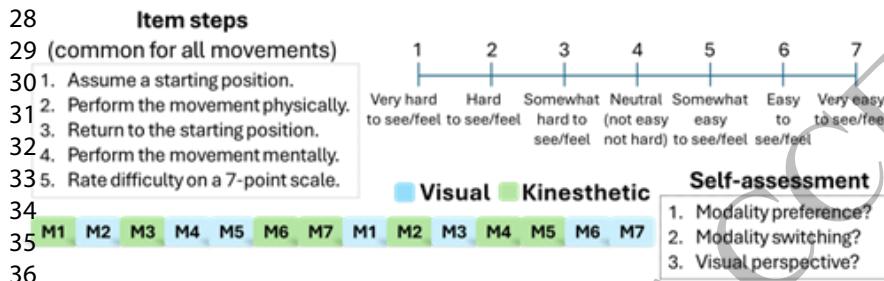
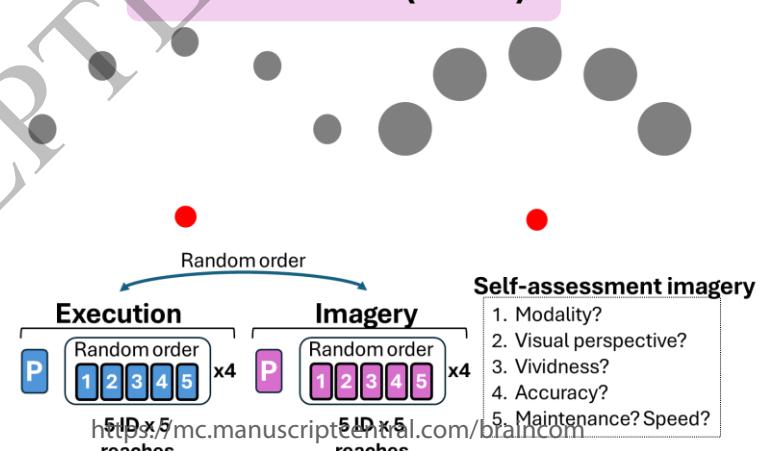





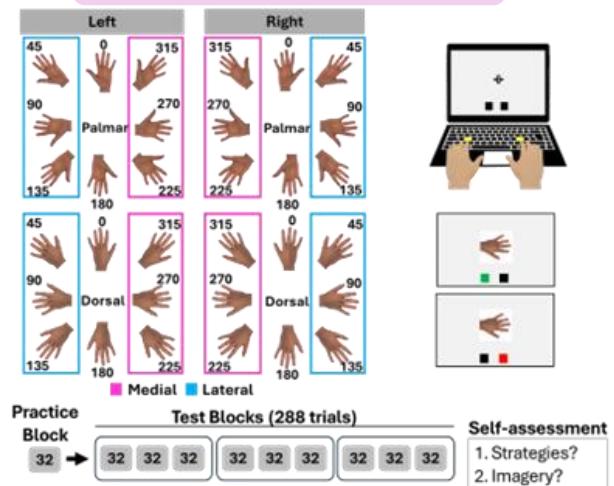
Figure 1


The relationship between corticospinal excitability and behavioural measures of movement imagery ability – Stage 1 Registered Report

⁵The change in MEP amplitudes and intracortical inhibition during movement imagery will be the neural markers of imagery ability.



²²²³They will be correlated with a behavioural battery of movement imagery tests for generation, maintenance and manipulation.


Generation (MIQ-RS)

Maintenance (CRFT)

Manipulation (HLJT)

Bayesian correlations will assess their relationship in a large sample (N=70-140).